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Abstract

The pulsations of a gas-filled bubble in a sound field

nre discussed with particular attention to the effect of
the viscosity of the external liquid; the irreversible con-
duction of heat by the gas within the bubble and the scat-
tering of energy by the bubble. The expressions obtainedfor the gas pressure within the bubble and the time rate

of change ýf bubble radius are used to determine the rate
at which gas diffuses in and out of a bubble of mean radius
R. A threshold fr bubble growth called the threshold for
gaseous-type cavitationis defined by the condition that
the net flow of gas across the surface of the bubble will.
be zero. This average rate of gaseous diffusion can also
be used to determine in a stepwise fashion the mean change
of bubble radius with time. Transient effects are also
discussedl
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ThLs memorandun represents a continuation

of studies on the phenomenon of cavitation.

These studies were tuntiated at this Laboratory

by Dr, 7, 0. Blake, Jr. It is hoped that sev-
eral additional reports will be added to this

series. Thanks are especially expressed to

Professor F. V, Hunt, Director of the Acoustics

Research Laboratory, Harvard University, who

has guided much of this work,
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A - amplitude of incident pressure wave

T - vector potential

C * velocity of sound

cL a velocity of sound for longitudinal wave

ap a specific heat at constant pressure

vc specific heat of gas at constant volume

c(rt) g gas concentration In liquid

D - gas diffusion constant
K 

,

g " K
9 K2

so gas tension

b "(z) / Hn4() = spherical flankel function

n(x) a /(x) = spherical Besse! function

K V heat conductivity

a M moles
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Notation (continued)

m = moles of gas

M a= coshd- cos

M = molecular weight

p pressure

SW pressure term associated with viscosity

Pg n gas pressure wLthLn bubble

pg - variational gas pressure within bubble

Ps scattered pressure wave

P.'t = complex amplitude of pI

P average pressure within bubble = P0 +

P0  = hydroste,tLc prcssure

Pn(y) = Legendre polynomial

qs =radial particle velocity of scattered wave

Q = heat content i

r - radial coordinate

R = radius of bubble

Ro = initial radius of bubble

R* = universal gas constant

t time

To = initial temperature of bubble and liquid

Ui -interval energy

v = volume

V a particle velocity vector

W = work

-iii-.
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Notation (contiLnued)
Z - complex impedance presented by bubble to

incident sound wave - U + iV

a
y - ratio of specific hea,. for gas -Z2

temperature

0 = space average of temperature

- wavelength

viscosity

p -density

- surface tension

a scalar potential

- angular frequency

= resonant angular frequency of bubble

In general the subscripts 1"" and "2" refer respectively to

the regions internal and external to the bubble,

-iv-
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Pulsations and Growth --f

Gas-Filled Bubbles in Sound ?ields

by

Murray D0 Rosenberg

Acoustics Research Laborato.y j

Harvard University, Cambridge, Massachusetts

INTRODUCTION

This report presents a theoretical discussion of the manner

in which gas-filled bubbles in liquids react to the incidence of

a sound wave and then grow as a result of a net inward diffusion

of gas. This process9 referred to as, rectified diffusion, re-
sults when more gas diffuses into the bubble during its half-

cycle of expansion than diffuses out of the bubble during its

half-cycle of contraction, The theoretical formulation of this

problem, namely the diffusion of gas across e moving boundary,

results in a nonlinear equation. As a first approximation, the

solution to the diffusion equation is obtained for a bubble of

constant radius. In determining the rate of flow of gas across

the surface of the bubble the bubble radius (and area) is then

allowed to vary in accordance with the pressure variations with-

in the bubble. This method had been first suggested by Harvey

[1-6]* who considered the steady-state diffusion of gas into a

bubble of fixed radius. Harvey assumed that the liquid surround-

ing the bubble is nonviscous and the temperature within the bubble

constant. Thir work was later extended by Blake [7-10] who con-
sidered the periodic steady-state diffusion of gas into a bubble of

fixed radius. Blake assumed that the temperature within the bubble

*References to articles included in the Bibliography are made
by numbers e.nclosed in brackets E ]o
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is constant and that all of the energy within a sound wave inoi-

dent upon the bubble is used to cause pressure variations within
the bubble, Thus, previous work with regard to the concept of
rectified diffusion had neglected the effect of the extinction

of energy by the bubble as a result of heat conduction within
it, scattering by it9 and the resistive forces due to the vis-
cosity of the li.quido These effects are discussed in this

report, In addition, the transient szoiution of the diffiaionri
process, a factor which has not been examined by other research-
ers1 is discussed, In order to obtain aL expression that
describes the manner by wnich gas diffuses into the bubble,
relations will first be determined for the variations of ten-
perature within the bubble, and the pressure field external
and Lnternal to the bubble.

II -i
TEMPRATTEF VARIATIONS WITHIN THE BUBBLE

A. The Heat-Conduction Bauation

Let us assume that a gas-filled bubble is subject to a uni-
form pressure field such that the changes in pressure at internal
points are due to the fluctuations of its boundary, This assump-
tion holds true as long as the bubblels diameter is much less
than the wavelength of the incident sound wave. During the
oscillations of the bubble, gas will diffuse inward and outward,
but the amount of gas in the bubble will be essentially constant
over a single cycle at practically all frequcnnies of interest
in this report. Within the bubble, the fJ.rst lF.w of thermodynamics
is applicable to a small element of volume, v, subject to a pres-
sure, p, Thus,

1 . •i+dw + • Pt dA-tl (2-1)
dt dt 1'ýdt dt

Schneider [ill has shown that the processes of evaporation and
condensatiorn are sufficiently rapid in comparison with the
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pulsation rate of the bubble so that the pressure of" the vapor
within the bubble will be constant and determLyted solely by the

temperature of the liquid. In general the pressure of the gas

within the bubble will far exceed ti pressure of the vapor,

AccordLng to the perfect gas law,

Pg dv + vdpg 9 ag R* dOl (2-2)

and assuming that the only heat conduction process takes place
in the gas

j~ * (2-3)

Hence,

K1V20 1  Pl p ~ l d (-4Siv 1 "olP1 ato

Let us define

a - P

and
b- SI

Then in spherical coordinates for a spherically symmetric system, V

!!+ c a b - 02~Br2 8r ar at 1" d

or

4~p
-a rb ý: * 0, (2-6)l2 at 1 dt

where u= r1  o

The heat conduction equation external to the bubble is

__: a 2  -" U0 (2-7)

* The single sub!cript, 1, will be used to denote the region
within the bubblej the single subscript, 27 will be used to de-
note the region external to the bubble,



The gas pressure wLthin the bubble wLll be made up of an average

pressure term P and a variational part p'. We shall see in
Chap. III that we can write

Pi0g

and the coefficient Pmay be complex

We shall also show that

Pi Po + II"

Bo Steady-State Solution

The steady-state solution of the two equations, (2-6) and

(2-;7), can be obtained by writing that

u M v(r)e

Then .t

d~v

dr 2  11 - b 0 (2-8)

and

d v
I- -a Y 0 (2-9)dr 2  2 22 :1

As solutions of these equations, let us try

v Alsinh qlr + BI cosh qlr a (2-10)

and
q r -q 2 r

v 2 = A 2 er 2 B2 e 2 a20  (2-11)

Then, since vl---0 as r-vO, and v2 is finite as r--,-

S= A n (1+061r - P8 r (2-12)

a-B3
and

v 2 B 2 e (~13)
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whe re

&,. ~and 2
" V 2 2" 2

The boundary conditions at the surface of the bubble based
upon the continuity of temperatiure and heat flux are

an1 -
K2 ad 12 (2=14)

U2 and(2-15)

rr-E I=R -J -ar -r=

By satisfying these boundary conditions we find that the tempera-
ture internal to the bubble is given by the expression

T(:6 " -

This solution nay be written as
2 2

whereu -*sinhb 1 1 os8r shb cos (+ coshTr0 si(u^+ cooh sin e

°- cosh61r ,sinbir sinh •2cos =2 sinhblr cos8lr cosh •2sin 4

1
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g s'a'(2'g4 sinh - + asn) + fr(slah 0 + s,,) +

e - Sine -1) 1

1J-g+ 0'sn ,)2+ (1-.g+ "sinO) 2  '
is' cos h$ cos

gK2
2

aa

The ratio, g - for various liquids is as follows (K, =

0Oo055Zl0- 3 oaa/seo cm0 C for air)g 4

K

y1 (See Smith [12•)
2

benzene 0.14

kerosene 0o,15

castor oil 0,13

olive oil 0o14

water 0.04

carbon tetrachloride 020

acetone 013

When r = R uo a I', and v 0 O Then if g << 1, the tem-
t 0perature at the surface of a bubble (r - B) is 0 - To • O



A plot of u4-l and v' as functions of 0 when r R is presenteild

in FPg° 1 and Table 2 for a given value of g and a'.

u1 '

Soo io. 3 On:10

100 2. OX10'3 -2. 13z103

5.0 -10o40xl0-3 -2o55x10l 3

1000 o lo 1l-3=o37x10"•

1,00o0 -,13-o0X10=3 -oal =

(g = 0.20, a' mVa7' :L5)

Figure 1 represents the extreme case of carbon tetrachloride
wherein the maximum change in temperature at the surface of the
bubble would be expected. It is apparent that even if the peak
pressure within the gas is as great as 10 atmospheres, the sur-
face temperature will differ from the liquid temperature by 10.6°C
(bl/aI a =-0o813xI0" for air).

By means of these curves and the values of u0 and vo one can
determine the temperature at various points within the bubble0

For convenience one can let Fir - n where n is any positive
fraction, 0 < n < 1, such that R/r - I/n0

The average value of 0 with respect to r will be

0m r 0 dr.r (2-18)

By using the integral

2 R
r3 sinh sr dr cC= s 2 sinh sR, (2-19)

0 srR



we obtain the expression -8=

T = (9I +i~l)Pg Iat (2-20)

where

S-a I g(cosh id -cos •) +*• a' j 2 (cosh 6 + cos d)2 2

+ sinh 60' 1lg-4s.[a(6a~~)l2 2

1+ _)2 a 23(cosh 0-c S) +g2 o(cosh 0+ cos $),

+ 2g(Oa'+l-g)sinh 0 +2g(l-g)sin - 1,

~~i ~ {(aI +l1)(a'd a~ I lI-g) + a'2  o ~-Cos 1d)

-1(64 a 4 1) (oosh 0 + cos 0)

A l2g(of a1+1) - +I a.,2  Oae In + 12sinh l

opposite page0

It is apparent from Fig, 2 that *-r $ < 3°0 the pulsations of

a bubble will be essentially isothe•_4l• for • > 30°0 the pulsa-

tions of a bubble will be essentially adiabatic° In the transi-
tion region losses will occur as a result of the irreversible

coniduction of heat°, We shall see later that the resonant radius
of a bubble usually lies in the vicinity of this transition

region0
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g - 0.04 g 0.o14 g m0.20

a' = 12.2 a' = 14.0 a a 15.0

SZ1o -3 X1o0-!o 3 " io X10-3 xlO• 3'

0.1 23,3 - 1.0 20.6 0 26.1 0 'H
1.0 - 2.2 - 33.7 -31 - 34.8 il
5o0 -391.8 -354.0 -395.5 -353.0 -397.3 -352.5

10,0 ~-701,,0 -239.4 -702i.9 -2A3 -l -703. A -238,0

10, -970.1 -29.3 -970.3 - 29.1 -970.4 - 29,,2

The perfect gas law for the bubble is

(P+p) ' gR*QO. (2-21)

Now let R vary with p'. Then

Rp ! dpg 3(P+ g'

But by differentiating Eq. (2-20),

dp• a1

and

- ~ a1  il)1]~2 . (2-23)

The quantities

a1 poP

p
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and
= op -Co

Thus Eq. (2.23) becomes

dpý
+ P: (2-24) I

where 0 D1

L (y-1) + +y

This equation expresses the relation between the change of
the radius of the bubble and the pressure variations within the
gas-filled bubble. This equation will be used later to study
the pressure field external to the bubble0

C. Transient Solution

The complete solution (transient and steady-state terms) to
the above problem can be obtained by means of Laplace transforms
(see Carslaw and Jaeger [133, p. 288)0 We have seen that the
temperature at the surface of a bubble will, in most cases, not
differ greatly from the temperature of the surrounding liquid.
Therefore, the importance of the transient term can be obtained

from an analysis that assumes that the fluid reservoir in contact
with the bubble is large enough and has a sufficiently high heat
conductivity such that its temperature is a constant value Too
At time t = 0, the temperature within the bubble is Tog and
the pressure within the bubble is Po+ Ro In addition3 we shall
momentarily assume that the radius of the bubble is constant (see
Appendix I).

Let us define the Laplace transform of 0, namely,

____est _(rt)dt (2-2_)



Equation (2-5) bec-dues

or 9 - d
-a1 s + aQ ___o -b.2

d2(r~ r 1 alr 1 + l~~,o-br•e-"s- dt -0 (2-27)dr 2  dtO
dt

or d ( ZC 

t daeri 1 ;ro (two)-b r re-t dPR 2-7
d2( ) 1 1~ dt1 dt 0 (-7
dr2

The initial and boundary conditions can then be written as

O(t-o) T 0

ý(r,s) finite as r--.&o

6(R, s) *T
S

But since p- -
g Pg Pi

dta g tS
Thu Eq ~ e t dt 9 dp

Thus Eq. (2-27) becomes

9-<(ra1 )-a s115+ a rTo-birsP - 0 (2-28)dr . . .

As a solution of this equation let us try the substitution

r•I Asinh qr + B cosh qr + Cr

It follows that

and T b

y i a et

By virtue of the boundary conditions we obtain
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B-O
an4 b

A R

a, Pa s iah Va -,

Thus,
[B s inh~i r ]

F 1- +2 -29)
8L r s=JVais H2•9

The inverse transform of this equation is obtained by means of
the inversion theorem

f~)Y+i ODe.t!

r 2t *-k e f(? dh~ (2-30)

The term is

By choosing the proper contour in the complex plane and by apply-

ing the theory of residues, it follows that

n R sinrr4he ar• ibi1 0 gr [sihrbi~al R ]
+Pg "2 2

-n TT(2-31)

aR
2

The average value of G with respect to r is

and the integ~ral-
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r sinh qr dr cosh qR sinh qR

R3  ri q2R2

R3  r r 2  sin nT dr - 3 "(l)ni " (2-32)

a H2

In the majorlty of cases the time constant will be at
most of the order of magnitude of 10"A seconds, and the transient
term can be neglected.

Since

-s--, coth4~ *=a R C'-- sinWVFiT R - siny'Zia R
(2-33)

we can write that

o)) e (2-3-t)

where
'l si-nhd -sin
ajm~coshifcos~

SsinhA + sinig L
1 - ao s hid- coR€ 0 2

And as we would expect from Eq. (2-20), the terms

g- 0.
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THE PRESSURE FIELD WXTIN THE BUBBLE
A~ Ex3act Analysis

The acoustical field external and internal to a spherical

gas bubble can be determined by an analysis similar to one devel-
oped by Epstein C1A3, The small signal wave equation for a Vis-

cous liquid is

+R V; ~v ( A_ ~ )'V(V(VV 0 (3-a)°dt3

where

By writing in terms of a scalar and vector potential

v --V * Vx, (3-2)
and assuming periodic time dependence, it follows that

725 + k2-.5- 0, q7f + 22A- 0 , (3-3)

where

k2 *W 2 [c,2 +& $6j-2 3•Ij- £
L 3 p

Consider the case of a purely longitudinal primary wave,
A sint(Im Ae't), that is incident upon a gas bubble in a vis-
cous liquid. If the origin of a spherical coordinate system is

taken at the center of the bubble with the polar axis in the

direction of the incident wave, axial symmetry will requi•le that

Art A0- O. Botia 5 and AO can be expanded into the following
seriesg

= eikrcose * in(2n+l)jn(k2 r)Pn(coso)
G12n 2

.14-



= I in(2fn+l)Br hn(k 2 r)Pn(cosQ)
2 nmo2

A2 •inC2n+l)Cn hnC( 2 r)-h Pn(coso)

- ~ r�in3(frl r)Pn(csO) f
n=o

where the subscript "i" refers to the incident wave; the subscript
"r" refers to the reflected wave; the number "2" refers to the ex-

terior of the bubbl; the _umber "i1" refers to the interior of

the bubble; and

(x) J x) ( spherical Bessel function

hn(z) - • Hn+•(z) = spherical Hankel function

Pn(y) , Legendre polynomial.

Let k 2R ac2  R d2 and klR m Cl. Then for the liquids and

bubble sizes with which we shall be concerned, c2 l , c 2 «1

k2 2 a and k! 2L,. cL1

The boundary conditions are such that the components of Vas

well as the stresses must be continuous at the surface of the

bubble with due allowance for capillary forces, The expansions

for in(x) and hn(x) ares

n I2 xA
1no3o, (2n+l) 2(2m+3) 2.4(2n+3) (2n+5)

J~n1 l(x) -. 1 lo3 oo(al)zx n + - + + oo
L 2(2n-) 2o4(2n-l)(2n-3) J

n >
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2 4

and

hn(Z) = an(X) _ i('l)njnJ(x) '

For the first term of the series, that is, n - 0, one can show
by using these expansions for (rx) and h,(x) that I

+ BolC2 01 1 2

Pd jBd 2  2.
2d L 4)i*2- + B91ud 2 , (3-6)

2

where P

and it has been assumed that

p? «<P*o

Elimination of between these two equations leads to0e2

B 0 ' f - .1.-01](37

Hence the first ter of the series for is

2

P20L

BJol (klr) jt6 e (3-8)
1 2  ( 3 -i

PlCLI

But02 Qdý (3-9)

and

p• • lBoI Jo(klr 1 ie (3-10)
9 1 0 1 P2
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Thus -pl!•• A et (3-11)
9 PlY +

The coefficient B can be determined by taking the boundary

condition for n=l, subject to the same approximations used

in obtaining B One oan easily show that

2
B1 oC 7 22 (3-12)

The additional term due to B1  in the series expansion

for I is

i ?÷dI r oCL2  7

Denote the correction to pg due to this additional term as

p", Then

4 - 2 2 (313
P g 03 c2  O 2f cL)

Thus if kR<<19 the pressure distribution over the surface of

the bubble will be uniform° For bubbles whose size becomes

comparable to a wavelength, the adtitional terms of the series

cannot be neglected,

B. Approximate Analysis

Equation (3-11) for pg' can be obtained in far more simple
g

manner [15) if onp makes the additional assumption that the terms

pertaininZ to viscosity in the wave equation are negligible, Then

the scalar potential for spherically symmetric pulsations in the

liquid is simply

i(wt kr)

0(3oi4)



Thus

Ps at ad '3 . 5)

and

qS =(ar

where

Ps M pressure in radially scattered sound wave,

qs = particle velocity in radially scattered
sound wave.

Up to this point the effect of the viscosity of the fluid
has been neglected. As a result of viscosity an additional

pressure term, pfv will appear. The approximate value of pf can
be obtained in the following manner. The pressure tensor in a
liquid of viscosity,4, is, for the case of radial symmetry,

f a ~(r 2q 5 ) (3
3r - qs (3-16)

The pulsation of the bubble will be in aucordance with the thermo-
dynamic equation (2-24),

dp'
V R t

where it has been assumed that

At the surface of the bubble the continuity of pressure and

velocity requires that

P + Pg- Aei(Ot + Psi + Pf) + -.
1 9Sr=R r:-R

or /
1i d " _d eiwt÷ p + 1)f (3 -17)

dt g dt ) R2 dt

and
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The average value, P1P with respect to time, is simply (Po+-.R)

where R is a mean value0  Thus we can obtain the expression for

pf, namely,
3 Y P '" e iwt (3- 19 )

Dg 3T'P4Y D20 + 14oe -3 Il

- 1+k 2 R2  c(l~k R )

whLch is the same as Eq. (3-11) for kR«<< 1.I f
C. Imedanee of Bubble and Resonance

In a similar manner we can determine the impedance presented
by the bubble tc, a sound wave, namely,

Z A e*t

w U + IV (3-20)

R -r1+k2R2 + w ( m2+ 52-)

l+k 2R2  +R(M 2 +3 2 )

3YPi a_ 2a( 2+A 2)

The termsin U result, respectively, from (1) the -ork accomplished
by tha incident pressure in overcoming resistive forces due to the
viscosity of the liquid; (2) the energy scattered by the bubbleý
(3) the energy lost as a result of the irreversible conduction
of heat within the bubble. The terms in V respectively result
from (1) the inertial reaction upon the bubble of the entrained

fluid that moves with the surface of the bubbleq (2) the compres-
sibility of the gas within the bubble.

A plot of the terms U and V as funntions of $ at a frequency
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of 60 kc/s is presented in Fig. 3 and Table 4,belowo Two
liquids have been considered, namely, water and olive oil. The
bubble is assumed to be air-filled.

Table 4

0o02 l02 X00006 336000 4o31Xi0 6 6

0O1 5olxl0'% 790.5 -4o 59xl05 66403,2 -2o9AxI05

1 5o1X10=A 79,3 -1o86xlO4 6640°3 =!olxlO'

5 2.!x10- 3  6a. 2 -2.68xl03 1374,7 -2.69x10 3

10 5.2lO 3  50o4 - 85o7 704,6 - 216o9

100 5olxl0=2 2530 +lo89x10* 2406 +1o73xlo4

The steady-state response (or impedance) of the bubble in-

dicates to some extent the appearance of its transient pulsa-

tions. The impedance consists of resistive, inertial, and
stiffness terms. Let us assume that these terms, to a first

approximation, are constant. For small values of R, the reac-

tance will be negative =- that is, the bubble wj'll be stiffness=

controlled. Under these conditions one can show [16) that it
is possible for an underdamped or oscillator condition to

exist in "non-viscous" liquids wherein a high=frequency transient
of rather large magnitude will be superimposed on the steady-state
pulsations if the applied signal has the proper phase, In other

words, under special conditions the transient pu2 !-tions of a
bubble could be important in affecting the initial diffusion of

gas inward and outward. We shall not, however, discuss this

problem in this memo::andum,

Equation (3-19) can now be written

.igRZ A



I ' I

I iO-1 I

x 103 i K V\

1 11

I'x ,.__0_ _ '
II I I i

411

I t I I

_ __0 _ _,,, /, i

i 100 100

THE 2 BTI

II I

I I *-

.II iI0 , I00I



TM25 l~

Resonant pulsations of the bubble will occur when V - 0, or

2 0(3-=22)

where

RP 3y'
W 2 W2 0W2 1L.....

0 n2 0 2 p

Similarly, we can define a resonant bubble size R = Rr, when

SW 
r ThUS, 

2Z ,, u + i W-.R -- ,._ (l-23)
1+k 2R2' W•2

and the displacement of the surface of a bubble 9Ls, respectively1

•S)F A et for

for R Rr=R WU fo r

A,1. ,for R >> R
/L | R

I k 2R2

Similarly,

• - 3 0  ~for R <<

3Y(P + 2/-P g i R 0 - = R, . . f o r R = R r
3R r

pg R Q3sfor R >>Rr
Pg = iR r
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The strain set up at the surface of the bubble is )r=8

This strain will be very largeo The corresponding

pressure will not be very large. However, if any material is
near or in contact with the bubble, it may be mechanically
damaged as a result of repeated deformations associated with

the large strains0 Some materials will effectively change

the character of the pulsations of the bubble such that the
above unalysis will not hold true0  And, finally, the effects f
of numerous bubbles are extremely complicated and can only be

estimated on the basis of the above analysis.

IV

THE RECTIFIED DIFFUSYON OF GAS

A. Complete Solution.to the Diffusion Eguation

The diffusion of gas into a bubble will be in accordance
with the diffusion equation

D t

For a moving boundary-value problem this equation is nonlinear

(see Appendix I). We shall assume that the radius of the bub-
ble is momentarily constant so that an exact solution to this
equation can be obtained, This assumption means that the dif-

fusion process occurs as a result of variations of the gas

pressure within the bubble, These variations in pressure result

from the continuity of pressure across the surface of the bubble.
We shall later make an approximation to account for the move-
ments of the bubble's surface.

During the positive helf-cycle gas will diffuse into the
liquid which is undersaturated with respect to the bubble; during

the negative half-cycle gas will diffuse into the bubble which
is undersaturated with respect to the liquid, But the surface

area of the bubble will be greater during the negative half-

cycle such that there will be a net sonically induced diffusion



of gas into the bubble, If the rate of this net influx exceeds
the rate at which gas dissolves as a result of the internal ex-

cess pressure due to surface tension, the bubble will grow.
This process, called "rectified diffusion," can be studied by

means of the diffusion equation.

In spherical coordinates for a spherically symmetrio

system the diffusion equation is

r2 (A-2) i

where
u =/

ao

?he boundary and initial conditions are

a(r ,t)--aogo0 as r--o.w

c(Rt) 9aPg (4 -3)

c(r,o) - aogo + r ao(Pg (t=o)-go)

or

u(rt)---orgo as r-*c-,

u(Rt) - Rpg W R(Pi+ a'A sin(wt4X)) - Wl(t)

u(ro) a rg0 + R(Pi-oo) + Rat.A sinV - W2 (r)

where

a = a

X; h +

h =tani 'U
V

tan-I
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The Oomplete solution of the diffusion equation in the infin-

ite region bounded by the internal sphere of radius R is readily

obtainable by the use of Fourier integrals and Laplace transforms.

A complete discussion of these techniques is given in the text-

books of Carslaw and Jaeger [133 and Churchill £172. The solu-

tion is (see Carslaw and Jaeger [131, p. 209)

- 2 d%
U A - A4D

L

2•2
-, YT 4 Dy

Let 1 - z - (%-r)01 and zt - (r+%-2R)Tjo Then,

w _ R ) T 2 ( 
" 

R 
.

t -6)+ -- W1 z dz _

r~ TI

where the integration parameter is now denoted by z. Suppose that

the boundary conditions are those of Eq. (A-A)o Then the solution ii
of the diffusion equation is

u(rt) - rgo+ R(Pi-g 0 )+ Ra;Asir.X' erf -,'R

+ Ra{A e sin(Wt + x'-(r-R)Y

+ 2 ox' Dtz 2

jA cosX' 2--2 sinz(r-R)dz
SW 2 +D2 z4
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D2Dtz 2 2

2NRA sinX w 2+D2zA

Thus, for t > 0,

aus I- +o~ 1

2 R r•

= - P go. aA sin(wt+X')

SaoaiAV [sin(wt+X')+cos(wt+X'))

2-Dt

C 2

2aoatA sinX •- at- (e'tz,

The term

OD: _DDtz2

-2aa• siX"• 't->O• (4-9)

"an-R f -- dzj t > 0(-9
n a + Z4 J"",

0 2

has, to this author's knowledge, not previously been evaluated in
closed form, The evaluation will therefore be given in consider-
able detail, Quite often, integrals of the form

S•(z)e~ dz

cannot be solved by Cauchy's method of contour integration in
the complex plane, The most conzon example is the error function

of infinity, namely, the definite integral
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Otheir techniques in the real plane must be used to determine
these integrals- The integral R n car be written:

'i z4Dr' d t"

But, .
-RODtz 2  D 21 --2 -22 dz

W!+ EA. , 2iw _iU2t E+

22
2 2

;N- snwxd e dz

01

S~wt = -~~ d
00

C(wt) = j 'xd
0

Thus,



n1 -S(wt))Sirkjt + 2, Cw)Ckt
(1222)

Similar techniques can be used to evaluate mauy integrals of

the form sa

0

O(E)e-az dzc

The associated trigonometric forms of these integrals may also

be evaluated by means of integration in the complex plane,

B. Rectified Diffusion

Since the rate at which gas flows into a bubble in moles/sec

is
4 -( S (4-13)

we can now determine the average value of i over one cycle. How-

ever, let us now introduce the variation R(t),

The radius R(t) of the bubble can be expanded in a Taylor~s
series about its mean or initial value, Ro This series is

0
+o dR aP +o

0 +dp °°

where

Pg Pi + Pg

or

ADg =pi,

Snbstitution of Eqs0 (2-2A) and (3-21) leads tD the series

R ol + A sin(wt + tan 1  U) +
0 2 2
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(1 + alA sin(wt + h) +U.) (s14)

Then

m =4nRoaoD go+ R a ,Cor. -sin), )(I+2R 0/fo )A23
(4-15)

where ' tan 1 Alal

since it can be shown graphically that

S(Wt)sint '_ O(wt)coswt '_C(Wt)cos~t siZXt,

C(wt)sinwt -e(Lt)coswt sin2t
ftC(Wt) slS'Wt -ýS (wt) coswot

VS(jt)Oosut sinwt

•S(wt)coswc sin2 wt • S(Wt)sin 3 Wt
S~(4=46)

and

S(wt)sin2wt 0•25
O(wt) sin wt 0.O 25"(=7

The terms in Eq° (4-16) represent the effect of the transient
terms in the solution of the diffusion equation. Even if the
graphical averaging of these terms is taken over the first few
cycles of the applied sound signal• the average of these terms will
be approximately zero. Thus the transient part of the solution
has a negligible effect upon the average rate at which gas moles
diffuse across the surface of the bubble,

In order to have (on the average) no moles of gas entering
or leaving the bubble, the sound amplitude, A, must be large
enough such that m = 0 Let us denote the sound amplitude that
satisfies this condition as A,,, the threshold for the growth of
gas-filled bubbles (also referred to as the threshold for gaseous-
type cavitation). Then,
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2(PoP=go, 4

=ala{'(oOS, -sin{,) [l+2E. •-)

gP(• £ 2R(U 2 + V2) ,y'

A plot of A O as a ".unction of 0 is presented in Fig. A and
Table 5. The frequency chosen is 60 kc/s, and two liquids,

water and olive oil, have been considered, The bubble is assumed

to be air-filledo

Table

_ae Olive~

R(cm) A O(Atmospheres) A O(Atmospheres)

o0o2 1X10=5 1,,8 4.7Oi oX0- 1." zo•Jo9 0.6o

I 5olxlO4 O.14 o.O6
5 2o ,lO-3 o0.2 o4Ol

10 5olXlO3  O O08 O002
100 5 o0X lO "2  0o 1 3 0 .00 2

C. Stenwise Growth of _ubble

For a gas buoble nucleus of radius Ro, much smaller than

resonant size, a sound amplitude A greater than A cOwill be re-
quired for its grct1o As the bubble becomes larger the sound

amplitude required for its growth (A a+) becomes less and less,
If the initial sound amplitude, A C+, is maintained constant,

the rate of growth of the bubble will be more and more rapid

as the bubble increases in size, Howevc.r, because of the
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additional losses that occur when a bubble approaches its
resonant size9 the rate of growth will be retarded for the
same AoD+9 and the pulsations of the bubble will become very
complex. For bubbles greater than resonant size9 the rate
of growth will decrease with increasing bubble radius, Fence,

we can see qualitatively that the mean radius of the bubble

should follow an S-curve with time for a constant value of
A,,+. Naturally, this discussion assumes that the bubble
remains In the sound field at all times and is not subject to

any forces. In a free progressive-wave system this assump-
tion will often hold true. In a standing-wave system Bjerknes
forces will keep a bubble below resonant size at a pressure
antinode and a bubble above resonant s1ze at a pressure node.
Because of these complications the growth curve of a gas-
filled bubble can be b.3st obtained by means of numerical
integration of the nonlinear equations that describe the
grrwTh of the bubble. These data have not been presented in

this memorandom, where the princip points of interest have
been (1) the minimum threshold for growth by means or recti-

fled diiffusionq and (2) the characteristics of the pulsations

of bubbles of various sizaso

__ I
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APPENDIX I

The Nonlinearity of Parabolic Equations

Subject to Moving Boundary Conditions

In this technical memorandum it is necessary to solve

parabolic equations such as the heat conduction equation and
the diffusion equation. For these equations the vallues of
the temperature and gas concentration at the moving surface

of the bubble can be taken as the boundary conditions, A

parabolic equation subject to conditions at a moving boundary

is nonlinear [18LI

Consider the one-dimensional equatior,

,r axi atd
where

f(x,o) = g(r) R < . = 0

-0

x--R x R' t > 0

or f(Rt 0

f(R(t),t)= h(t) 9 = R(t09 t > 0

Let us introduce the transformation

Q t (A-2)x:=R(t) -RI

Then

ax at R(t)-Rt dt >0,

(A-3)

where

=~31o



2.

TM25 -32-

f(xo) - g(X) 0 < x <, t 0

.0ax'
or xr-0 , t> 0

f(l, 0) * 0

f(R(t),t) - hbt) %J- >0 r

This equation is nonlinear unless R(t) is constant. There-
fore, in studying the pulsations and growth of gas bubbles we "
consider a spherical bubble immersed in an infinite liquid.
This bubble is in the path of a longitudinal sound wave.

In solving equations of the parabolic type we find it conven- ,
ient in many instances to assume that the radius of the bubble
is momentarily fixed. Later, we can introduce approximations
for the variations of bubble radius with time, namely, R(t)o
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